- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Alamgir, Faisal M. (2)
-
Krishnan, Abiram (2)
-
Lee, Dong-Chan (2)
-
Mitra, Samantha (2)
-
Ahsan, Sumaiyatul (1)
-
Read, Ethan (1)
-
Slagle, Ian (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Tracking the change in electronic structure of target elements is crucial to investigate the nature of redox reactions occurring in battery electrodes. X-ray emission spectroscopy (XES) and x-ray absorption fine structure (XAFS) perform this role well with high sensitivity and throughput, but the requisite of synchrotron facilities often limits those availability for material characterization. Using a lab-scale x-ray emission/absorption spectrometer, we investigated the changes in the local structure and chemistry around the 3d transition metal elements of LiMO 2 cathodes for Li-ion batteries as a function of the battery state of charge (SoC). Ex situ measurement was prepared from the electrode samples with discrete difference in SoC. Coupled with ex situ measurement, operando measurement was performed using pouch cells with LiMO 2 cathode, which enabled a real-time monitoring of chemical shift in an element-specific manner resulted from changing electrode potential. Through the XES mode of the bench-top spectrometer, fluorescence emissions from the LiMO 2 cathode, or the cell containing it, was monochromatized by a spherically bent crystal analyzer (SBCA). The Kβ emissions of 3d transition metal elements such as cobalt display position/shape difference of spectrum with varying SoC. The trend of chemical shift and change in spectral features provided the information on the electronic structure variation, such as oxidation state change of 3d transition metals in LiMO 2 during charge and discharge (i.e., delithiation and lithiation). Furthermore, valence-to-core (VtC) emission signals helped enable in-depth analysis such as spin structure characterization. In addition to the XES analysis, we could measure K-edge XAFS for the same 3d transition metals in LiMO 2 as well. In the XAFS mode of the spectrometer, SBCA monochromatized bremsstrahlung x-ray generated from a high-power x-ray tube is used to make an incident source energy-dispersive. While Kβ XES probed occupied levels, K-edge XAFS examined unoccupied levels providing comprehensive understanding on the change in electronic structure of 3d transition metals in LiMO 2 . Figure 1more » « less
-
Krishnan, Abiram; Lee, Dong-Chan; Slagle, Ian; Ahsan, Sumaiyatul; Mitra, Samantha; Read, Ethan; Alamgir, Faisal M. (, ACS Applied Materials & Interfaces)
An official website of the United States government
